Mobwar.ru

Мобильные операторы
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принципы сотовой связи физика

Как устроена и работает мобильная сотовая связь

Вряд ли возможно сегодня найти человека, который бы никогда не пользовался сотовым телефоном. Но каждый ли понимает, как работает сотовая связь? Как устроено и работает то, к чему мы все давно привыкли? Передаются ли сигналы от базовых станций про проводам или все это действует как-то иначе? А может быть вся сотовая связь функционирует лишь за счет радиоволн? На эти и другие вопросы попробуем дать ответ в нашей статье, оставив описание стандарта GSM за ее рамками.

В момент, когда человек пытается совершить вызов со своего мобильного телефона, или когда начинают звонить ему, телефон посредством радиоволн подключается к одной из базовых станций (наиболее доступной), к одной из ее антенн. Базовые станции можно наблюдать то там, то тут, взглянув на дома наших городов, на крыши и на фасады промышленных зданий, на высотки, наконец на специально возведенные для станций мачты красно-белого цвета (особенно вдоль автострад).

Станции эти выглядят как прямоугольные коробки серого цвета, из которых в разные стороны торчат разнообразные антенны (обычно до 12 антенн). Антенны здесь работают как на прием, так и на передачу, и принадлежат они оператору сотовой связи. Антенны базовой станции направлены во всевозможные стороны (сектора), чтобы обеспечить «покрытие сетью» абонентам со всех сторон на расстоянии до 35 километров.

Антенна одного сектора в состоянии обслуживать одновременно до 72 звонков, и если антенн 12, то представьте себе: 864 звонка способна в принципе обслужить одна крупная базовая станция одновременно! Хотя обычно ограничиваются 432 каналами (72*6). Каждая антенна соединена кабелем с управляющим блоком базовой станции. А уже блоки нескольких базовых станций (каждая станция обслуживает свою часть территории) присоединяются к контроллеру. К одному контроллеру присоединяется до 15 базовых станций.

Базовая станция в принципе способна функционировать на трех диапазонах: сигнал 900 МГц лучше проникает внутрь зданий и сооружений, распространяется дальше, поэтому именно данный диапазон часто используют в деревнях и на полях; сигнал на частоте 1800 МГц распространяется не так далеко, но на одном секторе устанавливают больше передатчиков, поэтому в городах ставят чаще именно такие станции; наконец 2100 МГц — это сеть 3G.

Контроллеров, конечно, в населенном пункте или районе, может быть несколько, поэтому контроллеры, в свою очередь, присоединяются кабелями к коммутатору. Задача коммутатора — связать сети операторов мобильной связи друг с другом и с городскими линиями обычной телефонной связи, междугородной связи и международной связи. Если сеть небольшая, то достаточно одного коммутатора, если крупная — используются два и более коммутаторов. Коммутаторы объединяются между собой проводами.

В процессе перемещения человека, разговаривающего по мобильнику, по улице, например: идет он пешком, едет в общественном транспорте, или передвигается на личном авто, — его телефон не должен ни на мгновение потерять сеть, нельзя оборвать разговор.

Непрерывность связи получается благодаря способности сети базовых станций очень оперативно переключать абонента с одной антенны на другую в процессе его перемещения от зоны действия одной антенны — в зону действия другой (от соты к соте). Абонент сам не замечает, как перестает быть связан с одной базовой станцией, и подключен уже к другой, как переключается от антенны — к антенне, от станции — к станции, от контроллера — к контроллеру…

При этом коммутатор обеспечивает оптимальное распределение нагрузки по многоуровневой схеме сети, чтобы снизить вероятность выхода оборудования из строя. Многоуровневая сеть строится так: сотовый телефон — базовая станция — контроллер — коммутатор.

Допустим, мы совершаем вызов, и вот сигнал уже добрался до коммутатора. Коммутатор передает наш звонок в сторону абонента назначения — в городскую сеть, в сеть международной или междугородней связи, либо на сеть другого мобильного оператора. Все это происходит очень быстро с использованием высокоскоростных оптоволоконных кабельных каналов.

Далее наш звонок поступает на коммутатор, что расположен на стороне принимающего звонок (вызываемого нами) абонента. В «приемном» коммутаторе уже есть данные о том, где находится вызываемый абонент, в какой зоне действия сети: какой контроллер, какая базовая станция. И вот, с базовой станции начинается опрос сети, находится адресат, и на его телефон «поступает вызов».

Вся цепочка описанных событий, с момента набора номера до момента раздавшегося на принимающей стороне звонка, длится обычно не более 3 секунд. Так мы можем сегодня звонить в любую точку мира.

Как работает сотовая связь. Часть 1: история и развитие

XXI век точно нельзя представить без современных мобильных телефонов и сотовых сетей. Мы обращаемся к ним не просто ежедневно, а сотни и тысячи раз в день. Практически каждый раз, когда просто смотрим на свой смартфон или используем его любым возможным образом, полагаемся именно на сотовые сети, которые соединяют нас с тысячами таких же зевак. Скорее всего, и этот материал вы подгрузили через них и сейчас читаете в общественном транспорте или просто на улице.

Современные смартфоны впечатляют своей производительностью, экранами с миллионами разных цветов, громкими динамиками и камерами на десяток-второй мегапикселей. Но без доступа к сотовым сетям они превращаются в дорогие игровые консоли, фотоаппараты и медиаплееры. Далеко не каждый понимает, как устроена мобильная связь. Именно поэтому мы решили рассказать о ней на страницах нашего сайта. Это первая часть материала, которая введёт вас в курс дела.

Сотовая связь стала новым витком развития технологий

Сотовую связь по праву считают одним из главных изобретений человечества — круче только интернет или какое-нибудь колесо. Корни знаковой технологии достигают 20-х годов. Тогда некоторые американские полицейские участки использовали телефонную радиосвязь диапазона 2 МГц, чтобы передавать информацию о преступниках на приёмники в машинах патрульных. Её внедрили в 1921, а в 1933 году снабдили возможностью двустороннего общения.

В 1934 году Федеральная комиссия связи США разрешила использовать четыре канала в диапазоне частот 30–40 МГц для телефонной связи, и до 1940 года ей начали пользоваться больше десятка тысяч полицейских машин в разных районах страны.

В 1949 году элементы, напоминающие современную сотовую связь, использовались для работы службы такси в американском Детройте. В оговорённых местах водители могли переключаться на конкретные каналы для общения с диспетчерами.

Многие считают прообразом мобильной связи именно эти технологии, но они сильно отличалась от современных по принципу работы. А вот концепция сотовой сети, которую мы знаем сейчас, начала разрабатываться в 1946 году учёными из объединения Bell Labs. Она оказалась принципиально новым витком нашего технологического развития, поэтому реальные перспективы её внедрения стали появляться лишь спустя почти 30 лет — в начале 70-х. Тогда для неё удалось придумать актуальную архитектуру.

Американские инженеры предложили идею разделения территории на ячейки, в каждой из которых должна была быть расположена передающая сигнал станция. Но для её тестирования не было подходящего принимающего оборудования.

Здесь в игру вступила Motorola. В 1973 году один из ведущих инженеров компании Мартин Купер представил миру первый прототип мобильного телефона. Чтобы продемонстрировать работу новой технологии, он прямо с улицы совершил звонок руководству конкурентной компании и похвастал своими успехами. Это впечатлило всех, и компания тут же инвестировала в перспективный проект более 100 миллионов долларов. Начали появляться первые базовые станции.

Первым мобильником стал Motorola DynaTAC 8000, который получил сертификат FCC 21 сентября 1973 года. Он весил более 700 граммов, работал от одного заряда 30 минут, а заряжался около 10 часов. Ах да, стоил такой «динозавр» порядка 4000 долларов, но это не помешало ему стать популярным. Именно с помощью него впервые можно было позвонить, не пользуясь услугами операторов связи. Кстати, это и первое мобильное устройство, которое мог поднять один человек.

В 1974 году Федеральная комиссия связи США дала добро на использование полосы частот в 40 МГц в диапазоне 800 МГц (в 1986 году её расширили на 10 МГц) для мобильной связи. А в 1978 в Чикаго стартовали испытания сотовой сети для опытов с базой в две тысячи абонентов. Именно этот год можно считать началом практического применения нового типа связи. А вот коммерческое использование мобильной связи в США началось в 1983 году. Тогда в Чикаго мобильную связь уже могли использовать почти все.

Читать еще:  Простой сотовый телефон с хорошим аккумулятором

Распространение мобильной связи в Америке обеспечил всемирно известный сейчас оператор AT&T. Он добился от властей лицензирования необходимых частот и построил первую сеть, которая охватила самые крупные американские города.

В Канаде мобильные сети начали использовать в 1978 году. А Японии их запустили в 1979, в Швеции, Дании, Норвегии и Финляндии — в 1981, в Испании и Англии — в 1982. До 1997 года сотовая связь уже охватила 140 стран мира.

Сотовыми сети называют из-за принципа расстановки вышек

Почему же связь называется именно сотовой? Ответ, и это внезапно, очень прост — вся территория её покрытия делится на равномерные шестиугольники, похожие на пчелиные соты. В центре каждого сектора находится базовая станция.

Форма шестиугольника была выбрана из-за того, что именно она позволяет обеспечить одинаковые расстояния между вышками. Это положительно сказывается на качестве и стабильности сотовой связи и лишает базовые станции дополнительных нагрузок. Вышки сотовой связи активно общаются друг с другом, и в каждом из подобных шестиугольников абоненты получают одинаковые сигналы, которые позволяет нам не чувствовать разрывов соединения.

Шестиугольные ячейки напоминают пчелиные соты, поэтому и связь в итоге называют сотовой. Кстати, это название всё больше отходит на второй план — чтобы не усложнять, его заменяют понятием «мобильная».

SIM-карты предназначены для идентификации абонентов

Несколько десятков лет назад SIM-карт ещё не было. Тогда для идентификации мобильных телефонов в сотовой сети операторы использовали только присвоенные им на заводе номера ESN. Сначала даже казалось, что это на 100% правильное решение, но на практике всё было иначе. Когда абонент менял телефон, ему нужно было ехать в офис оператора, чтобы его зарегистрировать. Эта было дорого и стоило денег.

Нужно было что-то, что смогло бы отделить абонента от его оборудования. Так в 1991 году и появились модули Subscriber Identity Module или SIM-карты. Впервые они появились с приходом 2G. Они представляли собой полноценные компьютеры с процессорами, постоянной и оперативной памятью и модулем шифрования. Первые были размером с визитку, но быстро уменьшились в габаритах, а скоро вообще станут встроенными и перезаписываемыми — мы уже на пороге этого.

Мобильному телефону остался только номер IMEI (International Mobile Equipment Identity). Да, он участвует в работе системы на стороне сотового оператора, но к абоненту не привязан никаким образом. Эта схема исправно работает почти 30 лет.

На каждой SIM-карте хранятся серийный номер ICCID и PIN- и PUK-коды, ключи, идентификаторы и так далее. Важнее всего — международный номер абонента IMSI и уникальный ключ идентификации пользователя под названием KI. Когда мобильный регистрируется в сети оператора, он использует именно IMSI и KI. Когда SIM-карта установлена в телефон, смартфон или другой гаджет, она по факту становится частью телефона и связующим звеном с поставщиком услуг — мы уже рассказывали про это.

За 40 лет мы увидели пять поколений сотовых сетей

Каждое поколение сотовой связи несёт в себе значительные улучшения в сравнении с предыдущим. Это и частотность, и шифрование, и битрейт, и характер обслуживания пользователей. Сегодня мы стоим уже на пороге пятого.

Сеть первого поколения первоначально запустили в Японии в 1979 году. Популярность в Европе и США она получила уже в начале 80-х. Это единственная аналоговая сеть связи, и все последующие уже были цифровыми. 1G занимала частоты 800 и 900 МГц, поддерживала только голосовые звонки и работала отвратительно. Качество звука было ужасным, а вызовы можно было легко перехватить с помощью FM-демодулятора. Роуминг тогда ещё не придумали, а скорость сети составляла 2,4 Кбит/с.

Со временем и простым пользователям, и коммерческим организациям этого оказалось мало — мир начал переходить на цифровую передачу данных. В числе её преимуществ оказались хороший звук, защита от прослушки и более высокая скорость.

Сеть второго поколения в коммерческую эксплуатацию впервые запустила компания Radiolinja. Это случилось в Финляндии в 1991 году. Новый стандарт связи дал абонентам SMS, роуминг, конференц-связь. Максимальная скорость 2G составляла 50 Кбит/с.

После старта второго поколения мир высоких технологий переживал настоящую революцию. Всё больше пользователей интересовались мобильным интернетом. Благодаря нему со временем появились стандарты GPRS и EDGE (2.5G) — они передавали данные на скорости от 115 Кбит/с до 384 Кбит/с соответственно. Это позволило абонентам проверять свою электронную почту прямо с мобильника, что ранее казалось чем-то совершенно невозможным. Дальше было только больше.

Сеть третьего поколения не заставила себя долго ждать. Это было связано с активным внедрением технологии UMTS — универсальных мобильных телекоммуникационных систем, которые поддерживали видеовызовы.

Именно тогда начали появляться различные приложения для чатов, электронной почты, видеосвязи и социальных сетей, веб-браузеры стали более быстрыми и функциональными. Их ввели в коммерческую эксплуатацию в 2001 году. В 3G повысилась эффективность использования частотного спектра за счёт улучшения сжатия звука во время разговора. Поэтому в одном и том же диапазоне частот могло происходить намного больше вызовов одновременно.

Сеть четвёртого поколения была разработана как улучшенная версия более старых сетей. Этот стандарт предлагает ещё более высокую скорость передачи данных и поддерживает все современные мультимедийные сервисы.

Все данные, включая голосовые вызовы, могут передаваться с помощью IP-пакетов. Для увеличения пропускной способности входящей и исходящей линии используются совершенно новые технологии вроде WiMax. Скорость передачи данных у этого стандарта сети благодаря ему поднимается до 1 Гбит/с. Главным недостатком 4G остаётся только недостаточное внедрение в большинстве стран мира. Обычно в больших городах сеть уже работает, а в маленьких нет.

Сеть пятого поколения обещает значительное улучшение передачи данных, меньшую задержку при соединении и другие улучшения. Полноценная эксплуатация стандарта начнётся в течение следующих нескольких лет.

Новый стандарт связи будет бережнее относиться к заряду аккумулятора. Максимальная скорость 5G будет достигать 35 Гбит/с, что в 35 раз быстрее, чем у четвёртого поколения. Значительно уменьшится задержка — это даст возможность обрабатываться тяжёлые операции на удалённых производительных серверах и моментально передавать на мобильные устройства. Тогда необходимость в их невероятной производительности отпадёт везде, где будет покрытие сотовой сети.

Во второй части вы узнаете о сотовой связи ещё больше

Мы разделили материал «Как устроена сотовая связь» на две части. Это первая, и здесь мы копнули в её историю, рассмотрели развитие мобильных сетей по поколениям и прикинули их дальнейшие перспективы в недалёком будущем.

В следующей части мы поговорим про базовые станции, которые находятся в центре пресловутых сот. Мы расскажем, что они собой представляют, могут ли быть опасными для нашего с вами здоровья, а ещё почему не всегда исправно работают.

Принципы сотовой связи физика

Принцип работы мобильного телефона

В теоретической части мы не будем углубляться в историю создания сотовой связи, о её основателях, хронологию стандартов и т.д. Кому это интересно – материала предостаточно как в печатных изданиях, так и в сети интернет.

Рассмотрим, что же из себя представляет мобильный (сотовый) телефон.

На рисунке очень упрощённо показан принцип работы:

Рис.1 Принцип работы сотового телефона

Сотовый телефон – это приёмо-передатчик, работающий на одной из частот в диапазоне 850МГц, 900МГц, 1800МГц, 1900МГц. Причём приём и передача разнесены по частотам.

Система GSM состоит из 3-х основных компонентов, таких как:

— подсистема базовых станций (BSS – Base Station Subsystem);

Читать еще:  Сотовый телефон классический

— подсистема переключения/коммутации (NSS –NetworkSwitchingSubsystem);

— центр управления и обслуживания (OMC – Operation and Maintenance Centre);

В двух словах работает это так:

Сотовый (мобильный) телефон взаимодействует с сетью базовых станций (БС). Вышки БС обычно устанавливают либо на своих наземных мачтах, либо на крышах домов или других сооружений, или же на арендованных уже существующих вышках всяческих ретрансляторов радио/ТВ и т.п., а также на высотных трубах котелен и других промышленных сооружений.

Телефон после включения и всё остальное время мониторит (прослушивает, сканирует) эфир на наличие GSM-сигнала своей базовой станции. Сигнал своей сети телефон определяет по специальному идентификатору. Если таковой имеется (телефон находится в зоне покрытия сети), то телефон выбирает лучшую по уровню сигнала частоту и на этой частоте посылает БС запрос нарегистрацию в сети.

Процесс регистрации по сути является процессом аутентификации (авторизации). Его суть заключается в том, что каждая SIM-карта, вставленная в телефон, имеет свои уникальные идентификаторы IMSI (International Mobile Subscriber Identity) и Ki (Key for Identification). Эти самые IMSI и Ki заносятся в базу центра аутентификации (AuC) при поступлении изготовленных SIM-карт оператору связи. При регистрации телефона в сети идентификаторы передаются БС, а именно AuC. Дальше AuC (центр идентификации) передаёт телефону некоторое случайное число, которое является ключом для выполнения вычислений по специальному алгоритму. Это вычисление происходит одновременно в мобильном телефоне и AuC, после чего оба результата сравниваются. Если они совпадают, то SIM-карта признаётся подлинной и телефон регистрируется в сети.

Для телефона же идентификатором в сети является его уникальный номер IMEI (International Mobile Equipment Identity). Этот номер обычно состоит из 15 цифр в десятичном представлении. Например 35366300/758647/0. Первые восемь цифр описывают модель телефона и его происхождение. Оставшиеся – серийный номер телефона и контрольное число.

Данный номер хранится в энергонезависимой памяти телефона. В устаревших моделях этот номер можно сменить с помощью специального программного обеспечения (ПО) и соответствующего программатора (иногда и дата-кабеля), а в современных телефонах он дублируется. Один экземпляр номера хранится в области памяти, которую можно программировать, а дубликат – в зоне памяти OTP (One Time Programming), которая программируется производителем один раз и не имеет возможности перепрограммирования.

Так вот, если даже изменить номер в первой области памяти, то телефон, при включении, сравнивает данные обеих областей памяти, и, если обнаруживаются разные номера IMEI – телефон блокируется. Для чего всё это менять, спросите вы? На самом деле законодательство большинства стран запрещает это делать. Телефон по номеру IMEI отслеживается в сети. Соответственно при краже телефона его можно отследить и изъять. А если успеть изменить этот номер на любой другой (рабочий), то шансы найти телефон сводятся к нулю. Этими вопросами занимаются спецслужбы при соответствующей помощи оператора сети и т.д. Поэтому углубляться в эту тему не стану. Нас интересует чисто технический момент смены номера IMEI.

Дело в том, что при определённых обстоятельствах данный номер может повредиться в результате сбоя ПО или неправильного его обновления и тогда телефон абсолютно не пригоден для эксплуатации. Вот тут на помощь и приходят все средства, чтобы восстановить IMEI и работоспособность аппарата. Подробнее этот момент будет рассмотрен в разделе программного ремонта телефона.

Теперь кратенько о передаче голоса от абонента к абоненту в стандарте GSM. На самом деле это технически очень сложный процесс, который абсолютно отличается от привычной передачи голоса по аналоговым сетям как, например, домашний проводной/радио телефон. Чем-то отдалённо похожи цифровые DECT-радиотелефоны, но реализация всё равно другая.

Дело в том, что голос абонента, прежде чем будет передан в эфир, подвергается множеству преобразований. Аналоговый сигнал разбивается на отрезки длительностью 20мс, после чего преобразовывается в цифровой, после чего кодируется путём применения алгоритмов шифрования с т.н. открытым ключом – система EFR (Enhanced Full Rate — усовершенствованная система кодирования речи, разработанная финской компанией Nokia).

Все сигналы кодека обрабатываются очень полезным алгоритмом на основе принципа DTX(Discontinuous Transmission) –прерывистой передачи речи. Его полезность заключается в том, что он управляет передатчиком телефона, включая его только в том момент, когда начинается произношение речи и отключает в паузах между разговором. Всё это достигается с помощью включенного в кодек VAD (Voice Activated Detector) –детектор активности речи.

У принимаемого абонента все преобразования происходят в обратном порядке.

FAQ про работу сотовой сети для самых маленьких

— В чём отличие сотовой связи от связи с помощью раций?
Связь — это так называемый вариант точка-многоточка, когда информация от одной рации передается на выделенной частоте, и все, кто настроен на ту же частоту, слышат вызов. Пока у вас 10 абонентов — всё просто. Когда людей становится больше, начинают быстро разбирать частоты, и очень скоро новые разговоры создавать негде – свободных частот не остается. Сотовая связь использует тот же частотный канал, но не отдает его в безраздельную собственность одного абонента, а разделяет его между несколькими, каждому выделяя лишь короткий промежуток времени для передачи информации. Вы можете в этом случае использовать частоты эффективнее и уметь соединять людей друг с другом напрямую. Однако для того, чтобы быстро обработать такой поток информации и разделить информацию одному абоненту в частотном канале от информации другому, необходим новый узел, который будет производить необходимые вычисления – появляется базовая станция или ретранслятор.

— Ок, пока просто. Пропустим пару шагов эволюции инфраструктуры, что получится?
Телефон связывается с ближайшим ретранслятором (базовой станцией), она доставляет данные в контроллер базовых станций и далее через голосовую Core Network несёт на другую базовую станцию, которую использует второй абонент. Та, в свою очередь, отдаёт данные и голос ему. Таким образом, каждый абонент имеет точку входа в общую сеть, а сеть обеспечивает коммутацию и доставку информации.

— А как делается авторизация в такой сети?
По специальному ключу. В вашу SIM-карту, кроме процессора, оперативки и средств I/O, вшит ключ, позволяющий авторизоваться в сотовой сети. Этот же ключ, с использованием других алгоритмов, обеспечивает шифрование сигнала: разговоры в сотовой сети «закрываются».

— А откуда базовая станция знает, что вызываемый абонент находится на её территории покрытия?
Когда абонент звонит другому абоненту, от голосовой Core Network приходит команда на все базовые станции, с требованием проверить наличие вызываемого абонента: что-то вроде «Вася, ты тут?». Эта процедура проверки называется Paging. По идее, телефон абонента отвечает одной из них, что он здесь. Дальше устанавливается соединение через нужные узлы. Но с ростом количества базовых станций их стали объединять в географические группы – Location Area, которые управляются с узла голосового коммутатора — MSC.

— Ок, новый тип узла, коммутатор. Что он делает?
Переходим на новый уровень сложности. Есть регионы, в каждом из них — своя группа базовых станций, координируемая общим узлом-контроллером. Контроллер обеспечивает подключение к себе всех базовых станций, и сбор от них звонков абонентов. Но что с этими звонками делать, он не знает и передает всю информацию на тот самый Коммутатор. Коммутатор знает, где и когда последний раз находился каждый абонент в его зоне действия, и поэтому, когда вы звоните Васе:

  1. Сначала ваш телефон по радиоканалу передает звонок на БС.
  2. БС ретранслирует данные до контроллера
  3. Контроллер передает те же данные на коммутатор
  4. Коммутатор проверяет номер, который вы вызываете – есть ли такой в зоне его обслуживания?
  5. Если да, коммутатор отправляет вызов в нужную Location Area, чтобы получить ответ от базовой станции, где последний раз регистрировался Вася
  6. Если такой номер не принадлежит нашему коммутатору, он отправляет вызов на другой коммутатор в соответствии с имеющимися у него таблицами маршрутизации и ищет нашего Васю в других сетях
  7. Коммутатор другой сети также отправляет вызов своим базовым станциям по известной ему Location Area, где последний раз регистрировался Вася
  8. Одна из базовых станций отвечает на наш вызов, и вы, наконец, можете начать разговор.
Читать еще:  Рейтинг сотовых телефонов 2020 цена качество

— Ладно, а как коммутатор узнает, что Вася в его зоне (LA)?
Базовые станции имеют код зоны — LAC. Когда ваш телефон переключается на базовую станцию, LAC которой отличается от предыдущего использованного, отправляется специальный пакет с обновлением расположения — Location Area Update. Этот сигнальный пакет обрабатывается коммутатором, в нем же сохраняется информация, что ваш телефон зарегистрирован на базовой станции с новым LAC. В будущем все вызовы на ваш номер будут отправляться по базовым станциям имеющим данный LAC, пока коммутатор не получит новый пакет Location Area Update, где будет информации о новом географическом коде. Кроме того, на всякий случай такой пакет отправляется раз в несколько часов, даже если вы не сдвигаетесь с места.

— То есть когда телефон лежит около колонок, и они делают странные звуки — это не пришельцы меня слушают?
Нет, это просто Location Area Update или какой-то другой сигнальный пакет, которые телефон передает и принимает регулярно, даже если вы с ним ничего не делаете.

— Кто строит базовые станции?
Сотовые операторы. Или точнее их подрядчики, которые имеют соответствующие лицензии на строительство и опыт работы. Как показывает нехитрый подсчёт, на Россию нужно от нескольких десятков до нескольких сотен тысяч базовых станций для покрытия 95% территории. Очень приблизительно, одна БС стоит около 2 миллионов — это по затратам как открыть маленький ресторан. Это ещё если нашёлся подходящий годный столб. Если столба нет — смело пишите до 8 миллионов, особенно, если вышка где-то в степи или на горе со сложным доступом.

— Из чего состоит инфраструктура оператора и куда идут мои деньги?
Кроме базовых станций, контроллеров, коммутаторов, магистральных транспортных линий и других узлов сети (которых только чтобы перечислить, потребуется полстраницы) нужны склады запчастей, инженерные службы, сервис и так далее. Базовые станции на домах требуют арендных отчислений собственникам, людям нужна зарплата, оборудование нужно менять, проводить техническое обслуживание, оплачивать счета за электричество, потребляемое оборудованием. Плюс операторы постоянно расширяются — это новое железо, обновление старого, новый софт. А ещё есть офисы с теми, кто пишет ПО, колл-центры, аналитики, маркетинг, реклама, салоны продаж и подключений — в общем, полный набор.

— Стойте-стойте, забыли ЦОД!
Верно, для работы сотового оператора нужно обрабатывать огромное количество данных. Именно поэтому сотовые операторы обычно обладают не только хорошей магистральной сетью, но и наиболее современными дата-центрами. В дата-центрах считается всё. Одна из самых ресурсоёмких задач — подсчёт баланса в реальном времени. Кстати, операторы сотовых сетей настолько давно и успешно работают с ЦОД-ами, что их опытом и ресурсами пользуются многие другие – арендуя ресурсы дата-центров сотовых операторов для своих проектов.

— Ок, тут понятно. А как взаимосвязаны сети разных операторов?
Принцип примерно похож на вызов одним коммутатором другого. Упрощая, вы связываетесь с БС, она — с контроллером, тот — с коммутатором, а коммутатор ищет узел входа в другую сеть по номеру вызываемого абонента. Коммутатор родной сети находит нужный номер в своих таблицах и определяет, на какой внешний коммутатор необходимо отправить вызов, после чего создается маршрут до нужного узла.

— А роуминг?
Телефон обычно пробует найти домашнюю сеть. Если это не получается, он начинает искать другие сети и пытается в них регистрироваться. Коммутатор сотовой сети, где вы пытаетесь зарегистрироваться, проверяет, есть ли у данного оператора роуминговое соглашение с вашим домашним оператором. Если такое разрешение находится, коммутатор точно знает, что абонентов вроде вас можно обслуживать, и вы получите связь. Например, когда вы приезжаете в новую страну, вас почти сразу «подхватывает» другая сеть, с которой у вашего оператора есть соглашение. Эти соглашения в большинстве очень редко обновляются, поэтому цены на трафик могут быть очень высокими. Там, где у вас есть безлимитный трафик в роуминге, скорее всего, соглашение было обновлено относительно недавно невероятной кровью юридических отделов обоих операторов.

— Можно ли выйти в роуминг в своём регионе?
Технически — да, другой оператор имеет возможность вас «подхватить». Но чтобы так не случилось, ваша SIM содержит настройки не цепляться к чужим отечественным сетям, а коммутаторы чужих сетей не разрешают вашему телефону регистрироваться на базовых станциях неродного оператора. Иначе бы вы оказывались в роуминге в лифте, на границе области и так далее. Исключение — аварийный межсетевой роуминг, когда все сети работают для всех абонентов во время чрезвычайных ситуаций. Ну и всегда нужно помнить, что звонки в службу спасения можно делать всегда, даже через чужую сеть! Когда на вашем экране появляется надпись «Только экстренные вызовы» или «SOS» это означает, что ваш оператор в данном месте не имеет своих базовых станций, но через сеть другого оператора вы можете сделать бесплатный звонок на экстренный номер «112».

— Почему телефоны Verizon не работают в РФ?
Причин может быть масса. Самая распространенная – «залочка» телефона под конкретный код сети оператора. Согласно стандарту сотовой связи, каждый оператор имеет уникальный код, который не повторяется нигде в мире, и технически довольно легко обеспечить при включении телефона проверку SIM карты – тот ли код сети на ней использован. Другая возможная причина — в каждой стране используются свои частоты для организации связи, и у каждого оператора лицензия на определённые диапазоны. Соответственно, если устройство вдруг не поддерживает диапазоны, используемые в РФ, работать в отечественных сетях оно не будет.

— Что надо знать про транспорт до БС?
Транспортный канал требуется каждой базовой станции, чтобы передавать информацию от абонентов, которая собирается через радиоканалы. Чаще всего транспорт до базовой станции сегодня — либо радиорелейный канал (РРЛ), либо кабели: медные и оптические. Оптика быстрая и крутая, медь дешевле и проще в использовании, а радио позволяет не класть кабель там, где это сложно или дорого делать. Учитывая, что каналы резервируются кольцами, обычная архитектура — пара оптических колец на город и область, плюс ветки базовых станций на медном транспорте и выносы на 1-2 хопа по РРЛ.


Чебоксары и Новочебоксарск, схема конца 2012 года

— Что с магистралями?
Только оптика, причём, сегодня — со спектральным уплотнением (DWDM). Для надежности — тоже кольца. Главный враг магистрали — экскаватор, который решил покопать там, где лежит кабель-канал. И даже красная ленточка с предупреждениями за полметра до кабеля не спасает — её обычно снимают с ковша уже постфактум.

— Чем отличаются 2G, 3G и 4G?
Это разные поколения стандартов сотовой сети, о чем можно догадаться по буковке G, которая означает Generation. Сети 2G, в основном, предназначены для передачи голоса, скорости передачи данных там очень невысоки по современным меркам. В сетях 3G можно передавать высококачественный голос, и одновременно предоставлять сервис передачи данных с высокой скоростью. Сети 4G сейчас являются сетями последнего поколения и предназначены только для высокоскоростных сервисов передачи данных, коммутация голосовых каналов в этой сети не предусмотрена стандартом, так что стоит помнить: даже если оператор предоставляет услуги голоса в сетях 4G, это какой-то вариант передачи голоса в IP сетях. Как правило, на одном сайте устанавливается несколько комплектов оборудования для создания сетей разных стандартов, которые предоставляют абонентам разные сервисы. В ближайших планах — замена множества разнотипных блоков базовых станций на общие – мультистандартные. Стандарты сотовой сети отличаются массой технического функционала, но вы этого почти не видите. Наиболее значимые отличия для обычного абонента — разная скорость интернета, разные зоны покрытия, разное качество голоса (HD-Voice очень крут).

Ссылка на основную публикацию
Adblock
detector