Mobwar.ru

Мобильные операторы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

3g 4g 5g

Просто о сложном: 2G, 3G, 4G и 5G

Говоря о мобильном интернете на планшете или смартфоне, мы часто используем термины 2G, 3G, 4G и 5G. Мы расскажем, что это такое и какой стандарт использует ваш смартфон.

Если говорить коротко, то 2G, 3G, 4G и 5G — это аббревиатуры, обозначающие разные стандарты мобильной радиосвязи.


Буква G означает generation, то есть «поколение», и, следовательно, обозначает второе, третье, четвертое и пятое поколение радиосвязи.

Разница между 2G, 3G и 4G в основном заключена в скорости передачи данных. Эта характеристика важна для мобильных устройств, таких как смартфоны и планшеты, чтобы как можно быстрее «путешествовать» по интернету.

В настоящее время в мире существуют стандарты 2G, 3G и 4G, но не все три типа представлены во всех регионах. Смартфон всегда выбирает наилучшую сеть, но не каждый смартфон поддерживает все виды связи. Кроме того, многие поставщики мобильных услуг в настоящее время предлагают соединение 4G только для определенных контрактов.

В самом начале 2020 года будет запущен стандарт 5G. В то время как 4G продолжает оптимизироваться для частного использования, 5G предназначен для совершенно других целей. В частности, промышленным организациям интересны еще более высокие скорости связи. Если же говорить о применении 5G в частном секторе, например, вождение с использованием навигатора требует высокой пропускной способности и стабильного соединения для оценки данных в реальном времени, при этом высокопроизводительный компьютер в каждом автомобиле — совсем не обязательное условие.

Определения: 2G, 3G, 4G и 5G

2G: Этот стандарт мобильной радиосвязи был создан в 1992 году, но пришел в Россию в начале 2000-х и по-прежнему в основном используется для телефонии. Мобильные данные передаются через GPRS при максимальной скорости передачи данных 53,6 кбит/с или по Edge (E) со скоростью до 220 кбит/с. Это очень медленно по сегодняшним меркам, но достаточно для приложений, таких как WhatsApp. «Тяжелую» веб-страницу или загрузку видео этот стандарт уже не потянет.

3G: в 2000 году был разработан следующий стандарт мобильной радиосвязи (3G) с названием UMTS. Это позволило развить скорость передачи данных до 384 кбит/с. В 2006 вдогонку вышел HSDPA, позже HSDPA +. Эти стандарты также входят в поколение 3.5G и даже развивают скорость до 7,2 Мбит/с и 42 Мбит/с соответственно.

4G: 4G — актуальный стандарт связи для мобильных телефонов. Теоретически возможна скорость загрузки 1000 Мбит/с. Таким образом, даже очень большие данные могут быть загружены за считанные секунды. На практике, однако, вам повезет, если вы получите соединение со скоростью около 100 Мбит/с при заявленной оператором скорости около 150 Мбит/с, но цифры увеличиваются из года в год. LTE продолжает расширяться.

5G: В то время как 4G по-прежнему оптимизируется для домашних пользователей и может считаться вполне достаточным, но интернет вещей, например, должен сильно выиграть от появления стандарта 5G, поскольку разработчики обещают 10 Гбит/с, что в 10 раз быстрее, чем 4G.

Сегодня 5G — это скорее концепция, так как единого стандарта еще не существует. Чтобы 5G вышла «в люди», нужно сделать немало: например, перейти на новое оборудование, разработать техтребования и выделить частоты.

В чем разница между 4G и 5G?

Привет, Хабр! Я учусь по специальности радиотехника. В последнее время многие знакомые спрашивают меня, зачем переходить на технологию 5G и в чем разница между 4G и 5G. Поэтому сегодня представляю вашему вниманию перевод статьи на эту тему.

5G ― это сеть мобильной связи, которая пришла на смену 4G, с улучшенными показателями скорости передачи, покрытия сети и надежности.

Модернизация существующей сети понадобилась, потому что число устройств, требующих интернет-соединения, постоянно растет. Чтобы нормально функционировать, многим девайсам нужна пропускная способность сети, с которой 4G уже не справляется.

5G работает на других антеннах и частотах, дает доступ в интернет большему количеству устройств, минимизирует задержки при передаче данных и обеспечивает сверхбыструю скорость.

5G работает иначе, чем 4G

Новая мобильная сеть не была бы новой, если бы фундаментально не отличалась от существующих. Одно из принципиальных отличий в том, что 5G работает в другом диапазоне радиочастот, чтобы достичь целей, с которыми не справляется 4G.

Радиоспектр разбит на полосы, характеристики которых меняются с ростом частоты. 4G работает на частотах ниже 6 ГГц, в то время как 5G использует крайне высокие частоты в диапазоне от 30 ГГц до 300 ГГц.

Высокие частоты хороши по многим причинам, одна из наиболее важных ― они способны обеспечить высокую емкость сети и большие скорости передачи. Высокочастотные диапазоны пока что не перегружены существующей сотовой связью и в будущем смогут обеспечить растущие требования к пропускной способности сети. Кроме того, передача сигналов на крайне высоких частотах характеризуется четкой направленностью, поэтому радиосигналы в этом диапазоне могут передаваться параллельно с работой других беспроводных устройств, не вызывая при этом интерференцию.

В свою очередь вышки 4G излучают сигнал во всех направлениях, иногда расходуя впустую энергию и мощность на излучение радиоволн в зоны, где подключение не требуется.

5G передает данные на более коротких волнах, а это значит, что антенны могут быть гораздо меньше используемых сейчас, и в то же время обеспечивают более точную регулировку направленности. Поскольку одна базовая станция может вмещать больше направленных антенн, 5G будет поддерживать количество подключенных устройств на метр на 1000 больше, чем 4G.

Это значит, что, когда сети 5G станут широко доступны, данные будут передаваться на крайне высоких скоростях большему количеству пользователей. Точность передачи возрастет, а задержки будут минимальны.

У высоких частот есть и свои минусы. Крайне высокие частоты передают сигнал в пределах прямой видимости между антенной и приемным устройством. Более того, радиоволны этого диапазона сильно затухают при передаче на дальние расстояния, потому что их энергия поглощается гидрометеорами (дождь, туман, снег) и другими объектами.

По этим причинам расположение антенн в сетях 5G должно быть тщательно спланировано. Возможно, это будут маленькие антенны в каждой комнате или здании или большие, расположенные по всему городу. Может даже оба эти типа. Скорее всего, придется использовать много ретрансляторов, передающих радиоволны как можно дальше, чтобы обеспечить поддержку 5G на большом расстоянии.

Читать еще:  3g пушка своими руками

Еще одно различие между 5G и 4G состоит в том, что сети 5G легко адаптируются к разным типам передаваемого контента и способны переключаться в режим пониженного энергопотребления, когда не используются или когда какое-то устройство работает на низких скоростях, а затем переключаться на более высокую мощность для доставки таких услуг, как, например, HD видео стриминг.

5G намного быстрее, чем 4G

Полоса пропускания ― это количество информации, которая может быть скачана или загружена по сети в единицу времени. Теоретически, в идеальных условиях, данные передаются на пиковых скоростях, если какие-либо устройства и помехи очень мало влияют на скорость.

С точки зрения пиковых скоростей, 5G в 20 раз быстрее, чем 4G. Это значит, что за время, которое требуется для загрузки фрагмента данных в сети 4G (кино, например), его можно загрузить 20 раз по сети 5G. Если взглянуть иначе, вы можете скачать практически 10 фильмов, прежде чем 4G скачает первую половину одного!

Пиковая скорость в сетях 5G достигает как минимум 20 Гбит/с, а для 4G ― 1 Гбит/с. Цифры относятся к устройствам, которые не перемещаются. Скорость варьируется, как только вы начинаете двигаться, например, в машине или поезде.

Тем не менее, эти скорости не являются обычными для устройств в сетях 5G, поскольку зачастую множество факторов влияют на пропускную способность сети. Более важно взглянуть на реалистичные скорости или среднюю измеренную пропускную способность.

Сети 5G пока не используются повсеместно, поэтому мы не можем оперировать реальным опытом, но сети 5G неоднократно тестировались и стабильно показывали минимальную скорость загрузки 100 Мбит/с (домашние сервисы работают на скоростях от 300 Мб/с до 1 Гб/с!)

Скорость зависит от многих переменных, но сети 4G в среднем показывают менее 10 Мбит/с, что делает 5G как минимум в 10 раз быстрее, чем 4G.

Что может делать 5G, чего 4G не может?

С учетом различий в работе технологий, понятно, что 5G прокладывает путь в будущее мобильных устройств и коммуникаций, но что это действительно значит для вас?

С 5G по-прежнему можно отправлять текстовые сообщения, звонить, пользоваться интернетом и передавать потоковые видео.На самом деле, ничто из того, что вы сейчас делаете на своем телефоне в отношении интернета, никуда не денется с переходом на 5G ― сервисы просто будут улучшены.

Веб-сайты будут загружаться быстрее, видео, которые автоматически запускались раньше, станут запускаться еще быстрее (к сожалению?). Онлайн-игры перестанут тормозить, а видео в Skype или FaceTime станет более плавным и реалистичным.

То что сейчас кажется быстрым при работе в интернете, может показаться мгновенным.

Используя 5G в качестве домашней сети, вы сможете одновременно подключить к интернету большее количество устройств без проблем с пропускной способностью. Некоторые домашние интернет-соединения настолько медленные, что просто не справляются с технологиями, появляющимися изо дня в день.

Домашняя сеть 5G позволит подключить смартфон, игровую консоль, умные дверные ручки, гарнитуру виртуальной реальности, беспроводные камеры видеонаблюдения, планшет, ноутбук ― всё к одному маршрутизатору одновременно.

4G не справляется с растущим числом мобильных устройств, в то время как 5G открывает пути технологиям на базе подключения к интернету, таким как интеллектуальные светофоры, беспроводные датчики, носимые устройства и устройства общения между автомобилями.

Транспортные средства, которые получают данные GPS и инструкции по навигации (например, оповещения о дорожном движении), требуют крайне быстрого интернет-соединения ― нереалистично полагать, что 4G справится с этими требованиями.

Поскольку скорость передачи у 5G гораздо выше чем у 4G, есть вероятность того, что для передачи данных не потребуется предварительное сжатие. Это позволит еще быстрее получить доступ к информации, ведь теперь ее не надо распаковывать перед использованием.

Когда же появятся сети 5G?

Пока что мы не можем пользоваться 5G, потому что для мобильных операторов и провайдеров услуг технология в настоящее время находится на стадии тестирования и разработки, а телефоны 5G пока что даже не завоевали популярность.

Точная дата релиза 5G для каждого провайдера или страны не назначена, но большинство из них планируют вводить сети 5G в эксплуатацию в 2019 или 2020 году, за исключением некоторых южнокорейских телекоммуникационных компаний.

Что такое 5G и как эта технология изменит нашу жизнь

В чём главные отличия 5G от существующих стандартов?

Что мы получим от внедрения 5G?

Мой смартфон будет работать в новой сети?

Узнайте, что даст пользователям мобильная связь нового поколения и стоит ли прямо сейчас покупать смартфоны с поддержкой 5G.

Что такое 5G?

5G (fifth generation) — это сокращённое название пятого поколения мобильной связи, которое придёт на смену существующим сейчас 3G и 4G. За этим сокращением скрывается целый набор технологий, многие из которых ещё находятся на стадии разработки. Завершение этапа тестирования и утверждение стандартов ожидается не ранее 2020 года.

В чём главные отличия 5G от существующих стандартов?

Внедрение пятого поколения мобильных сетей обещает стать революционным прорывом в области связи за счёт следующих нововведений:

  • Массивные MIMO. Эта технология подразумевает использование нескольких антенн на приёмопередатчиках. В результате скорость передачи данных и качество сигнала возрастёт пропорционально количеству антенн за счёт разнесённого приёма.
  • Новые диапазоны. Сегодня сети LTE занимают частоты ниже 3,5 ГГц. Стандарты 5G подразумевают использование более высокочастотных диапазонов. Это позволит избавиться от помех, однако заставит увеличить мощность передатчиков и более плотно размещать базовые станции.
  • Network slicing (нарезка сети). Эта технология позволяет мобильным операторам разворачивать логически изолированные сети, каждая из которых будет выделена под определённые нужды, например для интернета вещей, широкополосного доступа, трансляции видео и так далее. Таким образом мобильная сеть нового поколения сможет более гибко подстраиваться под различные применения.
  • D2D (Device-to-device). Устройства, находящиеся неподалёку друг от друга, смогут обмениваться данными напрямую.

Что мы получим от внедрения 5G?

Первое и самое важное следствие внедрения 5G — значительное увеличение скорости передачи данных. В ходе предварительного тестирования было зафиксировано достижение пиковых показателей на уровне 25,3 Гбит/с. Если говорить о реальных скоростях, которые ждут обычных пользователей, то в 5G они достигнут 10 Гбит/с.

Это значит, что вы сможете загружать фильмы в разрешении Full HD за считаные секунды.

Для сравнения: сейчас максимальная скорость 4G у абонентов редко превышает 100 Мб/с. Большая пропускная способность сети пригодится для прямых трансляций видео высокой чёткости, работы приложений виртуальной реальности, организации систем удалённого обучения.

Читать еще:  3g какая скорость

Ещё 5G уменьшает задержку сигнала до 1 миллисекунды. Напомним, что сейчас задержки могут достигать 10 миллисекунд в сетях 4G и 100 миллисекунд в 3G. Улучшение этого показателя позволит использовать мобильное подключение даже в тех ситуациях, когда критически важное значение имеет время отклика. Например, для дистанционного управления сельхозтехникой, промышленными роботами или беспилотными автомобилями.

Глобальное распространение сетей пятого поколения приведёт, скорее всего, к постепенной смерти Wi-Fi. Ваш смартфон, планшет или ноутбук всегда и везде будут иметь доступ к интернету, независимо от того, есть рядом роутер или нет.

Мой смартфон будет работать в новой сети?

Нет. Для использования всех возможностей сетей следующего поколения понадобится приобрести смартфон, который их поддерживает. Уже известно о скором выпуске нескольких таких устройств. В их числе Xiaomi Mi Mix 3, Samsung Galaxy S10, Motorola Moto Z3, ZTE 5G, Huawei Mate Flex, Oppo F11 Pro, Nokia 10 и некоторые другие.

Однако не спешите оказаться в первых рядах покупателей. Технология 5G активно развивается, её стандарты окончательно ещё не утверждены. Вполне возможно, что финальная реализация будет несколько отличаться от текущей, поэтому продающиеся сейчас устройства быстро устареют. К тому же мобильные сети 4G ещё далеко не полностью исчерпали потенциал своего развития.

Когда ждать?

Сейчас во многих странах проводятся испытания 5G. Полноценный запуск первых сетей нового поколения планируется не ранее 2020 года. Скорее всего, это произойдёт в азиатском регионе.

Что касается России, то в первом квартале 2019 года будет утверждена концепция создания и развития сетей 5G, а к концу 2019-го — выделены диапазоны частот. К концу 2020 года будут запущены первые пилотные проекты по внедрению сети пятого поколения. Таким образом, широкого распространения новой технологии можно ожидать не ранее, чем через 3–4 года.

Поколения мобильной связи 1G, 2G, 3G, 4G, 5G

Мысль о создании беспроводной мобильной связи зародилась еще в начале прошлого столетия. С тех пор, работы в этом направлении велись по большей части западными странами и Советским Союзом. Рабочий прототип сотового телефона появился только лишь в 1973 году, когда компанией Motorola был представлен миру официально первый мобильный телефон DynaTac. В том же году, 3 апреля, директор отдела мобильной связи компании Motorola Мартин Купер, прогуливаясь по Манхеттену, демонстративно позвонил по мобильному телефону, чем привел в восторг прохожих.

Сегодня, жизнь человека трудно представить без мобильного телефона. Телефония, интернет со всеми его сервисами и возможностями – то без чего теперь невозможно обойтись ни дня. А ведь появилось все это не так уж давно, хотя за последние 35 лет сменилось уже четыре поколения сотовой связи. Развитие в этой области идет так быстро, что, едва исчерпав возможности 4G, операторы вот-вот предложат новое – пятое поколения мобильной связи.

В этой статье мы расскажем о том, как развивалась сотовая связь из поколения в поколение, и какие технологии применялись на каждом из этапов.

1G – первое поколение

Стандарты связи первого поколения были аналоговыми и имели множество недостатков. Все тогдашние технологии, мало того, что имели проблемы были с качеством сигнала, так еще и были несовместимы между собой.

Наибольшее распространение получили следующие стандарты:

  • AMPS (Advanced Mobile Phone Service – усовершенствованная подвижная телефонная служба). Данный стандарт широко использовался в странах Северной и Южной Америки, а также в Австралии;
  • TACS (Total Access Communications System — тотальная система доступа к связи). Этот стандарт получил распространение во многих Европейских странах;
  • NMT (Nordic Mobile Telephone – северный мобильный телефон). Использовался в скандинавских странах.
  • TZ-801 (TZ-802, TZ-803). Использовался в Японии.

Несмотря на все недостатки, аналоговым сетям мобильной связи все же нашли коммерческое применение. Первопроходцами в этом, ожидаемо, стали японцы, которые запустили в массы аналоговую беспроводную телефонную сеть в 1979 году. Затем, в 1981 году, сеть была запущена в некоторых европейских странах — Дании, Швеции, Норвегии и Финляндии. В США, первая коммерческая беспроводная телефонная сеть была пущена в эксплуатацию лишь в 1983 году.

2G – второе поколение

Начиная с 1982 года, изучением и разработкой пан-Европейской наземной системы подвижной связи общего применения занималась рабочая группа GSM (от франц. Groupe Spécial Mobile — специальная группа по подвижной связи), которая была сформирована Европейской конференцией почтовых и телекоммуникационных ведомств. Затем, в 1989 году, изучение и разработку второго поколения мобильной связи продолжил Европейский институт стандартов в телекоммуникации. Но аббревиатура GSM осталась, хотя и приобрела новое значение — Global System for Mobile Communications (глобальная система для подвижной связи).

Внедрение коммерческих проектов на основе технологий второго поколения началось в 1991 году. Отличало второе поколение от первого в первую очередь применение цифровых методов передачи данных, что открыло возможности для создание таких сервисов, как SMS (Short Message Service — служба коротких сообщений), WAP (Wireless Application Protocol — беспроводной протокол передачи данных), с помощью которого стал возможен доступ к Интернет с мобильных устройств. Но скорость передачи данных в сетях 2G, конечно же, пока оставляла желать лучшего, так как позволяла загружать не более 19 Кбит интернет-трафика в секунду. Тем не менее, пользователи очень высоко оценили ноу-хау, и стимулов для дальнейшего развития технологий передачи данных посредством мобильных сетей было более чем достаточно.

Стоит отметить, что на пути к третьему поколению, были предприняты некоторые значительные шаги в развитии, которые, получили условные обозначения 2,5G и 2,7G.

Промежуточное поколение 2,5G ознаменовал приход технологии GPRS (General Packet Radio Service — пакетная радиосвязь общего пользования), которая позволила увеличить скорость передачи данных с 19 до аж 172 кбит/с. Но это лишь в теории, на практике скорость едва ли достигала 80 кбит/с, что по сравнению с 2G тоже не так уж плохо.

Другое яркое событие – появление технологии EDGE (EGPRS) (Enhanced Data rates for GSM Evolution). Этим событием был обозначен следующий промежуточный этап, получивший название 2,7G. Промежуточный, а не следующий, так как технология предполагала лишь усовершенствование прежней, а не создание чего-то принципиально нового. Что касается скорости передачи данных в таких сетях, то теоретический максимум составлял около 470 Кбит/с, практические показатели варьировались в районе 150 Кбит/с.

Читать еще:  3g какая частота

3G – третье поколение

В то время, как продолжалось коммерческое внедрение и усовершенствование технологий второго поколения, активно велись работы по созданию нового — третьего поколения. И вот, в начале 2000-х годов, наконец была запущена в эксплуатацию сеть 3G (в России в 2002 году). Основой послужила технология CDMA (Code Division Multiple Access — множественный доступ с кодовым разделением).

Третье поколение включает в себя целых 5 стандартов:

  • UMTS/WCDMA
  • CDMA2000/IMT-MC
  • TD-CDMA/TD-SCDMA
  • DECT
  • UWC-136

Первые два получили самое широкое применение в мире. Рассмотрим стандарты, используемые в России.

  • UMTS (Universal Mobile Telecommunications System – универсальная сисема мобильной электросвязи) – технология, разработанная на основе WCDMA с целью внедрения 3G в Европейских странах. Успешно прижилась так же и в нашей стране. Работает в частотном диапазоне 2110-2200 МГц. Максимальная скорость передачи данных в режиме UMTS составляет около 2 Мбит/с, при условии, что принимающее устройство неподвижно. При движении абонента значительно падает, и в зависимости от скорости движения, может снизиться до 144 Кбит/с.
  • HSDPA (High-Speed Downlink Packet Access— высокоскоростная пакетная передача данных от базовой станции к мобильному телефону) – самый первый из семейства протоколов сотовой связи HSPA (High Speed Packet Access — высокоскоростная пакетная передача данных). Основанный на UMTS технологии, он и последующие его версии, позволили значительно увеличить скорость передачи данных в сетях 3G. В первой реализации протокол HSDPA имел максимальную скорость передачи данных 1,2 Мбит/с. Скорость передачи данных в последующей версии протокола HSDPA составляла уже 3,6 Мбит/с. Дальнейшее развитие протокола HSDPA позволило увеличить скорость сначала до 7,2 Мбит/с, а затем, и до 14,4 Мбит/с.
  • HSPA+ – технология, базирующаяся в свою очередь на HSDPA, реализует более сложные методы модуляции сигнала (16QAM, 64QAM). HSPA+ в двухканальном режиме (DC-HSPA+) позволяет достигать скорости передачи данных до 42,2 Мбит/с.

4G – четвертое поколение

Сегодня, в мобильных сетях широко применяется технология уже четвертого поколения, причем не только в больших городах, но и в городах поменьше и даже деревнях. Переход к 4G был ознаменован внедрением новых стандартов передачи данных в беспроводных сетях, которые были разработаны совместными усилиями компаний Hewlett-Packard и NTT DoCoMo. Речь идет о стандартах WiMax и LTE. Далее подробнее о каждом из них.

WiMAX. Данный стандарт был разработан еще в 2001 году организацией WiMAX Forum. В состав данной организации входили такие производители, как Huawei Technologies, Samsung, Intel и многие другие известные компании. По сути технология WiMAX является продолжением всем знакомого стандарта беспроводной связи для локальных сетей Wi-Fi. Коммерческое применение для этой технологии впервые нашлось в Канаде в 2005 году.

LTE (Long-Term Evolution— долговременное развитие) концептуально является продолжением развития стандартов предыдущих поколений — GSM/UMTS и изначально к четвёртому поколению не относился, но на сегодняшний день именно этот стандарт является основным для сетей четвертого поколения. Разработанный крупнейшим в Японии оператором сотовой связи NTT DoCoMo, в десятом его релизе (LTE Advanced), данный стандарт был принят Международным союзом электросвязи как стандарт четвертого поколения, так как отвечал всем предъявляемым требованиям. Первый запуск коммерческой сети с поддержкой LTE был осуществлен в 2009 году в Швеции и Норвегии.

Максимально возможная скорость передачи данных по стандарту LTE составляет 326.4 Мбит/с, но это в теории. Что касается практики, то скорость передачи данных будет существенно зависеть от ширины диапазона частот, используемой оператором. Из российских операторов сотовой связи, на сегодняшний день, наибольшую ширину диапазона частот для сетей беспроводной связи, которая составляет 40 МГц, использует только Мегафон. Остальные компании, предоставляющие услуги сотовой связи, используют ширину канала 10 МГц.

Для сравнения, максимум скорости передачи данных в LTE-сетях в диапазоне частот 10 МГЦ составляет 75 Мбит/с, а предельная скорость в диапазоне 40 МГц может достигать 300 Мбит/с.

Есть еще такое понятие, как частотная полоса. Спецификации на такие частотные полосы называются бэндами (band). Всего таких спецификаций 70 и в разных странах для сетей LTE применяются разные спецификации. В России используются следующие 5:

  • band3 FDD LTE в частотном диапазоне 1800 МГц;
  • band7 FDD LTE в частотном диапазоне 2600 МГц;
  • band20 FDD LTE в частотном диапазоне 800 МГц;
  • band31 FDD LTE в частотном диапазоне 450 МГц;
  • band38 TDD LTE в частотном диапазоне 2600 МГц.

В сетях LTE FDD (Frequency Division Duplex) используется метод частотного разделения, это означает, что загрузка и передача трафика осуществляется в разных частотных диапазонах. А в сетях LTE TDD (Time Division Duplex) используется метод разделения по времени, то есть входящий и исходящий трафик передаются в одном диапазоне частот, но в разные промежутки времени.

5G – пятое поколение

Работы по разработке стандартов для сетей беспроводной передачи данных пятого поколения, на момент написания статьи, еще ведутся. Основным спонсором исследований в этом направлении является один из крупнейших игроков на рынке сетевого оборудования — китайская компании Huawei Technologies. Начало работ по внедрению 5G прогнозируется в 2020 году. В опытных испытаниях технологий пятого поколения удавалось достичь скорости передачи данных 25 Гбит/с, и это значение почти на порядок выше того, что способна дать сеть четвертого поколения.

Поддержка стандартов мобильной беспроводной связи.

Оборудование базовых станций российских сотовых операторов обеспечивает поддержку стандартов всех поколений, начиная с 2G: GSM, GPRS, EDGE, WCDMA, UMTS, HSPA, LTE, LTE-Advanced. Это дает возможность получать доступ к сети Интернет с мобильных устройств как новых, так и предыдущих поколений. Обычно, устройства для доступа к беспроводной сети интернет, будь то телефон, usb-модем или роутер с поддержкой сим-карт, при подключении выбирают ту сеть, которая обеспечивает максимальный уровень сигнала. Но, на большинстве из них в настройках можно вручную установить ту сеть, к которой следует подключаться. Такая мера может быть оправдана в тех случаях, когда несмотря на высокий уровень сигнала LTE, наблюдается низкая скорость соединения, обусловленная высокой загруженностью оборудования базовой станции, и переключение на режим UMTS в некоторых случаях может помочь увеличить скорость передачи данных.

Ссылка на основную публикацию
Adblock
detector